Search results for "Wave Solutions"
showing 5 items of 5 documents
Improvement of matrix solutions of generalized nonlinear wave equation
2005
Four classes of nonlinear wave equations are joined in one generalized nonlinear wave equation. A theorem is proved that the whole series of matrix functions satisfy the generalized wave equation. A justification of rotational properties of matrix solutions is given and a mathematical model of the ring vortex around the acute edge is proposed using of matrix solutions.
Existence of a traveling wave solution in a free interface problem with fractional order kinetics
2021
Abstract In this paper we consider a system of two reaction-diffusion equations that models diffusional-thermal combustion with stepwise ignition-temperature kinetics and fractional reaction order 0 α 1 . We turn the free interface problem into a scalar free boundary problem coupled with an integral equation. The main intermediary step is to reduce the scalar problem to the study of a non-Lipschitz vector field in dimension 2. The latter is treated by qualitative topological methods based on the Poincare-Bendixson Theorem. The phase portrait is determined and the existence of a stable manifold at the origin is proved. A significant result is that the settling time to reach the origin is fin…
Solutions via double wave ansatz to the 1-D non-homogeneous gas-dynamics equations
2020
Abstract In this paper classes of double wave solutions of the 1D Euler system describing a ideal fluid in the non-homogeneous case have been determined. In order that the analytical procedure under interest to hold, suitable model laws for the source term involved in the governing model were characterized. Finally such a class of exact double wave solutions has been used for solving some problems of interest in nonlinear wave propagation.
Dryland vegetation pattern dynamics driven by inertial effects and secondary seed dispersal
2022
This manuscript tackles the study of vegetation pattern dynamics driven by inertial effects and secondary seed dispersal. To achieve this goal, an hyperbolic extension of the classical parabolic Klausmeier model of vegetation, generally used to predict the formation of banded vegetation along the slopes of semiarid environments, has been here considered together with an additional advective term mimicking the downslope motion of seeds. Linear stability analyses have been carried out to inspect the dependence of the wave instability locus on the model parameters, with particular emphasis on the role played by inertial time and seed advection speed. Moreover, periodic travelling wave solution…
On the analytical expression of the multicompacton and some exact compact solutions of a nonlinear diffusive Burgers’type equation
2018
International audience; We consider the nonlinear diffusive Burgers' equation as a model equation for signals propagation on the nonlinear electrical transmission line with intersite nonlinearities. By applying the extend sine-cosine method and using an appropriate modification of the Double-Exp function method, we successfully derived on one hand the exact analytical solutions of two types of solitary waves with strictly finite extension or compact support: kinks and pulses, and on the other hand the exact solution for two interacting pulse solitary waves with compact support. These analytical results indicate that the speed of the pulse compactons doesn't depends explicitly on the pulse a…